On statistical convergence with respect to measure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric Properties of Convergence in Measure with Respect to a Matrix-valued Measure

A notion of convergence in measure with respect to a matrixvalued measureM is discussed and a corresponding metric space denoted by L0(M) is introduced. There are given some conditions on M under which L0(M) is locally convex or normable. Some density results are obtained and applied to the description of shift invariant sub-modules of L0(M) if M is defined on the σ-algebra of Borel sets of (−π...

متن کامل

On I-statistical Convergence

In the present paper, we investigate the notion of I -statistical convergence and introduce I -st limit points and I -st cluster points of real number sequence and also studied some of its basic properties.

متن کامل

On L-convergence of Bernstein–durrmeyer Operators with Respect to Arbitrary Measure

S d := {x = (x1, . . . , xd) ∈ R : 0 6 x1, . . . , xd 6 1, 0 6 x1 + · · ·+ xd 6 1} denote the standard simplex in R. We denote by ∂S the boundary of S. We will also use barycentric coordinates on the simplex which we denote by the boldface symbol x = (x0, x1, . . . , xd), x0 := 1−x1−· · ·−xd. We will use standard multiindex notation such as x := x0 0 x α1 1 · · ·xd d and α n := (α0 n , α1 n , ·...

متن کامل

On Lacunary Statistical Convergence of Double Sequences with Respect to the Intuitionistic Fuzzy Normed Space

In this paper, we study lacunary statistical convergence in intuition-istic fuzzy normed space. We also introduce here a new concept, that is, statistical completeness and show that IFNS is statistically complete but not complete.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Classical Analysis

سال: 2017

ISSN: 1848-5987

DOI: 10.7153/jca-10-08